gliner.modeling.outputs module¶
- class gliner.modeling.outputs.GLiNERBaseOutput(loss=None, logits=None, prompts_embedding=None, prompts_embedding_mask=None, words_embedding=None, mask=None)[source]¶
Bases:
ModelOutputBase output class for GLiNER models.
This class contains the fundamental outputs produced by GLiNER models, including loss, logits, and embeddings for both prompts (entity types) and input words/tokens.
- loss¶
The total loss for training. Shape: scalar tensor.
- Type:
Optional[torch.FloatTensor]
- logits¶
The prediction scores for entity spans or other outputs. Shape varies depending on the model configuration, typically [batch_size, num_spans, num_classes] or similar.
- Type:
Optional[torch.FloatTensor]
- prompts_embedding¶
Embeddings for the entity type prompts/labels. Shape: [batch_size, num_classes, hidden_size].
- Type:
Optional[torch.FloatTensor]
- prompts_embedding_mask¶
Attention mask for prompt embeddings. Shape: [batch_size, num_classes].
- Type:
Optional[torch.LongTensor]
- words_embedding¶
Embeddings for input words/tokens. Shape: [batch_size, seq_len, hidden_size].
- Type:
Optional[torch.FloatTensor]
- mask¶
Attention mask for input tokens. Shape: [batch_size, seq_len].
- Type:
Optional[torch.LongTensor]
- loss: FloatTensor | None = None¶
- logits: FloatTensor | None = None¶
- prompts_embedding: FloatTensor | None = None¶
- prompts_embedding_mask: LongTensor | None = None¶
- words_embedding: FloatTensor | None = None¶
- mask: LongTensor | None = None¶
- __init__(loss=None, logits=None, prompts_embedding=None, prompts_embedding_mask=None, words_embedding=None, mask=None)¶
- class gliner.modeling.outputs.GLiNERDecoderOutput(loss=None, logits=None, prompts_embedding=None, prompts_embedding_mask=None, words_embedding=None, mask=None, decoder_loss=None, decoder_embedding=None, decoder_embedding_mask=None, decoder_span_idx=None)[source]¶
Bases:
GLiNERBaseOutputOutput class for GLiNER models with decoder components.
Extends GLiNERBaseOutput with additional decoder-specific outputs, including decoder embeddings and span indices. This is typically used in GLiNER variants that include an explicit decoder module.
- loss¶
Inherited from GLiNERBaseOutput.
- Type:
Optional[torch.FloatTensor]
- logits¶
Inherited from GLiNERBaseOutput.
- Type:
Optional[torch.FloatTensor]
- prompts_embedding¶
Inherited from GLiNERBaseOutput.
- Type:
Optional[torch.FloatTensor]
- prompts_embedding_mask¶
Inherited from GLiNERBaseOutput.
- Type:
Optional[torch.LongTensor]
- words_embedding¶
Inherited from GLiNERBaseOutput.
- Type:
Optional[torch.FloatTensor]
- mask¶
Inherited from GLiNERBaseOutput.
- Type:
Optional[torch.LongTensor]
- decoder_loss¶
Loss specific to the decoder component. Shape: scalar tensor.
- Type:
Optional[torch.FloatTensor]
- decoder_embedding¶
Output embeddings from the decoder. Shape: [batch_size, num_decoder_tokens, hidden_size].
- Type:
Optional[torch.FloatTensor]
- decoder_embedding_mask¶
Attention mask for decoder embeddings. Shape: [batch_size, num_decoder_tokens].
- Type:
Optional[torch.LongTensor]
- decoder_span_idx¶
Indices of spans processed by the decoder. Shape: [batch_size, num_spans, 2], where the last dimension contains [start_idx, end_idx].
- Type:
Optional[torch.LongTensor]
- decoder_loss: FloatTensor | None = None¶
- decoder_embedding: FloatTensor | None = None¶
- decoder_embedding_mask: LongTensor | None = None¶
- decoder_span_idx: LongTensor | None = None¶
- __init__(loss=None, logits=None, prompts_embedding=None, prompts_embedding_mask=None, words_embedding=None, mask=None, decoder_loss=None, decoder_embedding=None, decoder_embedding_mask=None, decoder_span_idx=None)¶
- class gliner.modeling.outputs.GLiNERRelexOutput(loss=None, logits=None, prompts_embedding=None, prompts_embedding_mask=None, words_embedding=None, mask=None, rel_idx=None, rel_logits=None, rel_mask=None)[source]¶
Bases:
GLiNERBaseOutputOutput class for GLiNER models with relation extraction.
Extends GLiNERBaseOutput with relation-specific outputs for models that perform both entity recognition and relation extraction (Relex). This enables joint modeling of entities and their relationships.
- loss¶
Inherited from GLiNERBaseOutput.
- Type:
Optional[torch.FloatTensor]
- logits¶
Inherited from GLiNERBaseOutput.
- Type:
Optional[torch.FloatTensor]
- prompts_embedding¶
Inherited from GLiNERBaseOutput.
- Type:
Optional[torch.FloatTensor]
- prompts_embedding_mask¶
Inherited from GLiNERBaseOutput.
- Type:
Optional[torch.LongTensor]
- words_embedding¶
Inherited from GLiNERBaseOutput.
- Type:
Optional[torch.FloatTensor]
- mask¶
Inherited from GLiNERBaseOutput.
- Type:
Optional[torch.LongTensor]
- rel_idx¶
Indices of entity pairs for which relations are predicted. Shape: [batch_size, num_relations, 2], where the last dimension contains indices of the two entities.
- Type:
Optional[torch.LongTensor]
- rel_logits¶
Prediction scores for relations between entity pairs. Shape: [batch_size, num_relations, num_relation_types].
- Type:
Optional[torch.FloatTensor]
- rel_mask¶
Mask indicating valid relation predictions. Shape: [batch_size, num_relations].
- Type:
Optional[torch.FloatTensor]
- rel_idx: LongTensor | None = None¶
- rel_logits: FloatTensor | None = None¶
- rel_mask: FloatTensor | None = None¶
- __init__(loss=None, logits=None, prompts_embedding=None, prompts_embedding_mask=None, words_embedding=None, mask=None, rel_idx=None, rel_logits=None, rel_mask=None)¶