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Abstract

Extractive QA is an important NLP task with numerous real-world applications.
The most common method for extractive QA is to encode the input sequence with
a pretrained Transformer such as BERT, and then compute the probability of the
start and end positions of span answers using two leaned query vectors. This
method has been shown to be effective and hard to outperform. However, the query
vectors are static, meaning they are the same regardless of the input, which can be a
challenging issue in improving the model’s performance. To address this problem,
we propose DyReF (Dynamic Representation for Free), a model that dynamically
learns query vectors for free, i.e. without adding any parameters, by concatenating
the query vectors with the embeddings of the input tokens of the Transformer layers.
In this way, the query vectors can aggregate information from the source sentence
and adapt to the question, while the representations of the input tokens are also
dependent on the queries, allowing for better task specialization. We demonstrate
empirically that our simple approach outperforms strong baseline in a variety of
extractive question answering benchmark datasets. The code is publicly available
at https://github.com/urchade/DyReF.

1 Introduction

Extractive QA [Rajpurkar et al., 2016] is a challenging NLP task with the goal of predicting the
exact position of the answer spans given a document and a question as input. Early deep learning
based ExQA models were very specialized and heavily engineered. These models are mostly based
on LSTMs and attention mechanisms [Bahdanau et al., 2015]. The arrival of BERT [Devlin et al.,
2019] and pre-trained language models transformed the domain by introducing a simple yet effective
approach. It consists of concatenating the input question and text passage, then computing the start
and end of the answer spans using learned query parameters [Devlin et al., 2019]. This approach has
benefited from the Transformer-based language model pretraining [Devlin et al., 2019, Liu et al.,
2019, Joshi et al., 2020], which has enabled little architecture engineering to obtain state-of-the-art
results. Since its introduction, this objective has been widely adopted and is still the dominant
approach for extractive QA.

However, despite their high performance, we argue that such methods remain suboptimal since the
query vectors used to compute the start and end distributions are static, i.e., they are independent of
the input sequence. We propose DyReF, a novel method to tackle this problem, which extends these
models by allowing the queries to dynamically aggregate information from the input sequence to
better answer the question. To do so, we feed the initial query representations in the Transformer
model’s input along with the input sequences. This approach allows for (1) interaction between the
queries and the input sequence, (2) modeling the interdependence between the queries since the
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Figure 1: Illustration of our framework: DyReF. Start and end query vectors (qs and qe) are
appended to the input sequence and are then passed to the L-layers pre-trained transformer model
to obtain dynamic query vectors and specialized (or "query-aware") token embeddings. For the
vanilla/standard ExQA model, qs and qe are statics; they remain the same for different inputs.

positions of the start and end of the answer are mutually dependent, and (3) better specialization
of the token representation by using information from the queries. We draw all these advantages
from the Transformer attention mechanism. Another main advantage of our approach is maintaining
the same number of parameters as the model with static query representation while obtaining better
performance.

We conduct extensive experiments on several extractive Question Answering benchmarks, including
SQuAD [Rajpurkar et al., 2016] and MRQA datasets [Fisch et al., 2019]. Experimental results
demonstrate that our approach, DyReF, consistently improves the performance over the widely used
baseline on large and small datasets. In particular, we show that our approach outperforms the
baseline model by a large margin in few-shot scenarios.

The rest of this paper is organized as follows. In the background section we provide some context for
understanding the baseline model and the primary motivation behind our approach. Then we present
our proposed model in detail, followed by our experimental setup, results, and further experimental
analysis, as well as an overview of related work. The last section concludes this paper.

2 Background

2.1 Vanilla ExQA

Pre-trained Transformer encoders have been extremely useful in recent NLP research, enabling
significant improvements across a wide range of tasks thanks to self-supervised pre-trainings on
large corpora. For example, at the time of its publication, BERT outperformed all extractive question
answering benchmarks by a wide margin compared to previous heavily engineered LSTMs and
attention-based architectures such as BidAF [Seo et al., 2016].

This section outlines the mainstream approach to Extractive Question Answering tasks, which we
refer to as Vanilla ExQA. It is typically performed by feeding a pre-trained Transformer language
model such as BERT the input sequence {xi}Ni=1 which is the concatenation of the tokenized question
Q and the passage P containing the answer. The Transformer produces a set of contextualized token
representations {hi}Ni=1 ∈ Rd, d being the embedding dimension of the model. Then, to compute the
probability of the start and end position of the answer span, the following estimators are used:

p(start = i|Q,D) =
exp(qT

s hi)∑N
i′=1 exp(qT

s hi′)
p(end = j|Q,D) =

exp(qT
e hj)∑N

j′=1 exp(qT
e hj′)

(1)

Where qs and qe ∈ Rd are the start and end queries respectively. These queries are initialized
randomly and learned during the training of the model.
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The training objective is to minimize the sum of the negative log-likelihood of the correct start and
end positions (̂i, ĵ):

L = − log p(start = î|Q,P )− log p(end = ĵ|Q,P ) (2)

This training objective assumes independence between the start and end of the answer spans, but in
practice, it achieves more stable and more reliable results than joint objective approaches [Fajcik
et al., 2021]. This approach was first proposed by Devlin et al. [2019] and is now adopted by most
Transformer-based ExQA models [Liu et al., 2019, Joshi et al., 2020].

3 Our approach: DyReF

3.1 Main idea

The learned query vectors qs and qe of the vanilla approach are static, i.e., they are shared by all
input sentences, and as a result, are context-insensitive. We suppose that using these static queries
is a bottleneck for performance improvement, so we propose to extend this strategy by allowing
the queries to dynamically aggregate information from the input sequence, allowing the model to
efficiently adapt to the context.

DyReF, as illustrated in Figure 1, first computes word embeddings {h0
i }Ni=1 of the input sequence

{xi}Ni=1, which corresponds to the concatenation of the tokenized question and the passage containing
the span answer. Then, it appends the initial start query q0

s and end query q0
e to the input sequence

embeddings producing {q0
s,q0

e,h0
1, . . . ,h0

N} which is feed to a series of L Transformer layers,
TransL, to obtain the representations of the queries and the input tokens:

[qL
s ,qL

e ,h1, . . . ,hN ] = TransL([q0
s,q0

e,h0
1, . . . ,h0

N ]) (3)

Before training the model, we randomly initialize the first queries q0
s and q0

e using the normal
distribution, with a mean of 0 and a standard deviation of 0.02. We also initialize both the word
embeddings and the Transformer layers using a pre-trained Transformer-based language model.

Furthermore, to compute the probability of the start and the end answer spans, we use the estimators
of equation 1, replacing qs and qe by the final queries qf

s := qL
s , and qf

s := qL
e , the output queries of

the L-th Transformer layer. In the next subsection, we propose more robust alternatives for computing
qf
s and qf

e .

Benefits The main advantage of our approach is that it allows interaction between queries and input
tokens through the attention mechanism, unlike the vanilla model that uses static queries. More
precisely, query representations become dependent on token representations, allowing them to adapt
to each specific input to better answer a question. Furthermore, the start and the end queries become
dependent on each other, which is convenient since the position of the start and end of answer span
are indeed dependent. Our approach makes the task of the model easier since the span answer can be
located at multiple places in the input passage, and so collaboration between the start and end queries
is crucial. In addition, the input representations also receive information from the queries which can
be beneficial to the model.

3.2 Query representation strategies

In our work, we try several alternatives to compute the final queries, qf
t where t ∈ {s, e}.

Last layer The most straightforward approach is to take the last layer’s query representations as
the final representations:

qf
t := qL

t (4)

This setup supposes that the queries from the last layers contain sufficient information for accurately
predicting the span answer.
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Mean pooling The assumption here is that all intermediate queries may contain useful information.
Combining these queries to compute the final ones could be more robust than only using the last ones.
We propose to present the final query as the average of all queries from the L-layers:

qf
t :=

1

L

L∑
l=1

ql
t (5)

Max pooling The final queries are calculated here by taking the maximum value for each represen-
tation dimension across all layers:

qf
t := MAX([q1

t , . . . ,qL
t ]) (6)

In contrast to Mean pooling, which assumes they all have the same importance, the max-pooling
operation allows the model to dynamically select the most salient information from each layer.

4 Experimental Setup

4.1 Data

For our experiments, we employ widely used benchmark extractive question-answering datasets,
which include SQuAD [Rajpurkar et al., 2016], HotpotQA [Yang et al., 2018], NewsQA [Trischler
et al., 2016], TriviaQA [Joshi et al., 2017] and Natural Questions [Kwiatkowski et al., 2019]. These
datasets come from various sources such as Wikipedia articles, news articles and Web snippets. In
each of these datasets, a triple of “Question, Passage, Answer” is provided, and the task is to predict
the precise position of the answer (start and end positions) given the question and the passage that
contains the answer. The dataset statistics are detailed in Table 1 of the MRQA shared task paper
[Fisch et al., 2019].

4.2 Evaluation metrics

F1 scores and Exact Matching (EM) scores are the basic metrics used to evaluate the extractive
question answering task. The F1 measures the average overlap between the prediction and the ground
truth answer by considering both the prediction and the ground truth as bags of tokens and computing
their macro-averaged F1 score. The EM measures the percentage of predictions that matches exactly
any one of the ground truth answers [Rajpurkar et al., 2016].

4.3 Hyperparameters

We did not perform a hyperparameter search in this work. Instead, we adopted standard configurations
existing in the literature for better reproducibility. Specifically, we adapted the existing codebase
from [Ram et al., 2021] and [Joshi et al., 2020] GitHub repositories, which themselves use the default
HuggingFace Transformers library [Wolf et al., 2020] hyperparameters configuration. We employed
Adam optimizer [Kingma and Ba, 2015] with a learning rate of 3.10−5, where a warm-up stage is set
for the first 10% of the steps, then decay the learning rate linearly for the rest of the training steps.
We set the batch size to 12, and train for a maximum of 5 epochs for full-sized datasets. We train the
models up to either 2500 steps or 10 epochs in few-shot settings. We borrowed the baseline vanilla
QA implementation from [Ram et al., 2021] repository. We used PyTorch [Paszke et al., 2019] to
implement the models and load the pre-trained models from the Transformers library [Wolf et al.,
2020]. We trained all models in a server with V100 GPUs. In total, all the experiments described in
this paper as well as some preliminary experiments required about 2500 GPU hours.

5 Results

In this section, we present our main experimental results in Table 1, comparing different variants of
DyReF to the vanilla ExQA model. For the different approaches, we used either BERT or SpanBERT
for token representation.
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Enc Models
SQuAD HotpotQA TriviaQA NewsQA NaturalQs Avg.

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

SpanBT

Vanilla 82.96 90.56 63.89 79.83 72.42 77.05 52.66 67.72 65.26 77.38 67.48 78.58
Last 83.34 90.88 64.75 80.51 72.23 77.26 52.63 67.97 65.98 78.54 67.79 79.03
Mean 83.6 91.08 64.50 80.28 71.98 76.95 52.94 68.66 66.29 78.56 67.86 79.11
Max 83.03 91.08 64.56 80.55 72.49 77.39 52.4 68.27 65.96 78.44 67.69 79.15

BERT

Vanilla 79.65 87.42 60.41 76.63 64.53 69.85 48.52 63.25 62.39 74.76 63.10 74.38
Last 79.27 87.83 61.04 77.42 64.32 69.18 47.72 63.84 62.91 75.41 63.05 74.74
Mean 79.30 87.54 60.72 76.92 65.36 70.63 49.76 64.91 62.82 74.95 63.59 74.99
Max 79.18 87.65 60.14 76.73 64.55 69.72 49.10 64.66 62.96 74.95 63.19 74.74

Table 1: Main results. We compare variants of DyReF (Last (Eq. 4), Mean (Eq. 5) and Max) to the
vanilla ExQA approach (Eq. 1). For each approach (using BERT [Devlin et al., 2019] or SpanBERT
[Joshi et al., 2020] as token encoder) and for each dataset, we report the F1 score and the EM score.

BERT We first analyze the obtained results when using BERT [Devlin et al., 2019] as a token
encoder. We observe that DyReF with Mean pooling is the representation approach that achieves the
best F1 performance on average. It obtains the highest F1 score on three datasets, namely SQuAD,
TriviaQA, and NewQA datasets. Moreover, Max and Last have about the same performance still
outperform the vanilla ExQA model in terms of F1 score and EM.

SpanBERT In terms of global performance, using SpanBERT [Joshi et al., 2020] always outper-
forms the BERT-based model. In fact, SpanBERT’s pre-training is highly optimized for span-related
tasks, such as coreference resolution and extractive question answering. This shows the importance of
pre-training for the downstream tasks. Regarding the relative performance of the different approaches
using SpanBERT, they all outperform the vanilla model in terms of average F1 and EM scores, except
for a few experiments with TriviaQA and NewsQA where the Mean and the Max representation score
lower than the vanilla ExQA. We observe that similarly to BERT, the best representation approach
using SpanBERT is the Mean. It gets the highest averaged EM score and the second best-averaged
F1. Moreover, It obtains the highest F1 score on SQuAD, NewsQA, and Natural Questions datasets.

Overall For both BERT and SpanBERT, we conclude that the Mean approach is the most robust,
achieving the best average performance for the two token representation approaches. Finally, all our
proposed variants outperform the vanilla ExQA model on average, whether with BERT or SpanBERT.

6 Few-shot performance

We conduct few-shot experiments and report the results in Table 2. In all these experiments, we used
SpanBERT [Joshi et al., 2020] as the token encoder representation since we observed previously that
it always outperforms the BERT Devlin et al. [2019] representation in full-sized experiments and by
a large margin sometimes. We used dataset sizes ranging from 128 to 1024 data points, employing
the same splits as Ram et al. [2021], available in their GitHub repository.

Vanilla vs. DyReF In the few-shot scenarios, we observe that our models perform significantly
better than the vanilla approach both in terms of F1 and EM scores. For instance, on the SQuAD
dataset using 128 data points, the Max representation exceeds the vanilla model by 8.47 and 6.63
in terms of EM and F1 respectively. However, while the performance gap is large on small data
regimes, it becomes smaller as the size of the training datasets increases. Overall, these results show
that dynamic queries are beneficial when data is scarce, thus our models could be helpful for future
works on domain-specific ExQa tasks where annotating data can be time-consuming, expensive, and
requires expertise such as legal or biomedical domains.

Comparing variants We compare here our different variants of DyReF. We observe that all our
different approaches perform similarly across the datasets, but we note that the Max approach
performs best in many scenarios; in fact, it scores best on 3 of the 5 datasets when trained with 256
and 512 data points, and also obtains strong results on other dataset sizes.
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Train size Models
SQuAD HotpotQA TriviaQA NewsQ NaturalQs

EM F1 EM F1 EM F1 EM F1 EM F1

128

Vanilla 43.51 54.83 27.64 41.16 15.43 20.23 18.02 29.89 20.79 29.21
Last 49.97 59.48 28.65 40.63 18.14 23.64 24.22 36.55 27.14 35.33
Mean 50.76 60.66 27.77 39.55 24.38 30.60 24.10 35.85 25.67 33.76
Max 51.98 61.46 33.81 45.73 21.54 27.43 22.82 33.99 26.78 34.23

256

Vanilla 55.94 65.74 37.87 53.23 23.78 28.49 25.07 35.80 32.83 41.87
Last 61.86 71.71 39.08 53.41 30.03 37.24 32.10 45.64 34.79 44.52
Mean 62.36 71.87 39.48 53.22 32.95 38.64 31.70 45.61 36.12 45.43
Max 61.14 71.08 40.64 55.08 33.98 40.53 30.39 44.56 37.07 46.91

512

Vanilla 60.69 69.72 43.58 58.70 40.03 45.39 30.31 43.24 38.73 48.36
Last 66.91 76.71 46.25 61.17 45.23 52.62 35.04 49.94 42.50 53.28
Mean 67.39 76.97 46.84 61.91 48.32 54.58 35.66 50.24 42.79 53.24
Max 67.55 77.24 46.94 62.27 46.86 52.59 36.85 52.26 43.75 54.51

1024

Vanilla 64.72 74.01 46.87 62.54 46.28 51.87 37.20 50.61 43.72 53.42
Last 69.39 78.72 49.89 65.50 50.66 56.94 40.91 55.88 49.89 61.49
Mean 70.29 79.95 50.52 66.13 51.65 57.80 40.24 55.85 49.12 60.07
Max 70.72 80.35 50.97 66.40 50.94 56.77 40.98 56.71 49.52 61.15

Table 2: Few-shot performance. This table reports our few-shot experiments. We evaluate all the
datasets by training on different training sizes, ranging from 128 to 1024 data points. For all the
experiments, we employ SpanBERT for token representation as it consistently outperforms BERT.

Summary Overall, we find that using dynamic query representations, i.e., DyReF, is crucial in a few
datapoints scenarios as it provides good results over the widely used vanilla model. In fact, although
the difference is not significant under full data settings, DyReF outperforms vanilla by a significant
margin when using little training data. Furthermore, we remark that the Max variant provides the
strongest and most consistent results across the datasets.

7 Attention analysis

The attention mechanism plays a crucial role in our work since it allows the queries to interact with
each other and with the input tokens. In this section, we perform a detailed analysis of the contribution
of the attention mechanism for a better understanding of the model. To do so, we carry out two
studies: 1) in the first study, we compare different attention masks to identify the most relevant
query-query interactions and token-query interactions; and 2) in the second study, we visualize the
attention map to determine the area of the input that the queries pay the most attention to, which may
help to explain and better comprehend the model.

7.1 Attention mask variants

Motivation In DyReF, the queries can interact among each other as well as with the input tokens
thanks to the attention mechanism. Our approach can therefore model the dependency between queries
and input sequence elements by learning to aggregate useful information through the Transformer
layers to better answer a question. In this section, we propose to analyze some variants of DyReF by
trying different attention masks for a better understanding of their importance for our model. The
main idea is to mask some interactions in order to detect their influence on the model performance in
terms of F1 score and EM metrics.

Masking strategies We propose to analyze three variants of our model, illustrated in Figure 2. All
our studied variants use dynamic queries but employ different attention masks between the queries:
the first variant, Bidirectional, allows full attention between queries; then Causal allows the end
query to attend the start query but not vice versa, and finally, Independent completely mask attention
between queries making them independent.
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self-att EM F1
a) Static (vanilla) 83.08± 0.09 90.64± 0.10

Dynamic
+ b) Full 83.43 ± 0.18 91.04 ± 0.04
+ c) Bidirectional 83.37± 0.26 91.04 ± 0.05
+ d) Causal 83.43 ± 0.07 90.99± 0.07

+ e) Independent 83.03± 0.08 90.88± 0.01
Table 3: Different masking variants for the self-attention layers. This study is performed on
SQuAD dataset using Mean and SpanBERT for token representation. Results are averaged across
three random seeds.

qs qe {hi}N
i=1 qs qe {hi}N

i=1 qs qe {hi}N
i=1 qs qe {hi}N

i=1 qs qe {hi}N
i=1

a) Static b) Full c) Bidirectional d) Causal e) Independent

Figure 2: Different attention masking for DyReF. a) Static is the one employed by the vanilla
ExQA, in which the queries do not depend on the input. b) Full is our main model where both all
the queries and all the tokens attend to each other. c) Bidirectional allow full interaction between the
queries and remains dynamic (depends on input tokens), however, the input tokens do not attend to
the queries. d) Causal is the same as the bidirectional except that the start query does not attend to
the end query. e) Independent also depends on the input sequence but queries are not attending to
each other, they are completely independent.

Results The results, reported in Table 3, show that the best results both in terms of F1 and EM
metrics are achieved by the Full attention model. However, both Causal and bidirectional obtain
competitive results which demonstrate that interaction between the queries are important since the
Independent approach has lowest score.

7.2 Attention visualization

In addition to the attention mask study, we visualize the attention score of the transformer layer of
DyReF. The main motivation for this analysis is to see which part of the input sequence the query
vectors interact with the most, which gives us more insight into understanding our model. The
visualization is shown in Figure 3. For the visualizations, we employed a trained QA model on the
SQuAD datasets using SpanBERT [Joshi et al., 2020] for token representations using Last for query
representation. We observe a similar behavior when visualizing the attention map with Mean and
Max.

Method Since SpanBERT [Joshi et al., 2020] has 12 layers and each layer contains 12 attention
heads, this results in 12× 12 attention matrices. To ease the interpretation, we decide to aggregate
all the attention matrices into a single one: to do so, we simply employed a 2D max pooling over
the head and layer dimension of the staked attentions matrices resulting in only one attention matrix
of dimension (2 + N) × (2 + N) where N is the length of the input sequence and 2 the number
of queries. Finally, we only visualize the query-query and query-token attention (i.e, we drop
token-token interaction) resulting in a attention map of 2× (2 +N) in figure 3.

Analysis The resulting attention visualization is shown in Figure 3. We conduct the study using
two different inputs to assess the consistency of our model: the two examples share the same passage
but have different questions and answers. This visualization shows that the queries have already the
knowledge of the answer span position even before making the final prediction, which may be the
reason DyReF is more robust than the vanilla approach.
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Figure 3: Attention visualization. This figure shows to which tokens the start and end queries (qs and
qe) are attending. For this study, we a trained QA model on the SQuAD dataset using SpanBERT as
token representation and Last for query representations. To create the attention map, we elementwise-
max the attention values over all the 12 attention heads and 12 layers of the models. For the two
examples, we employ the sample passage but different questions to evaluate the consistency of the
attention. We put on boldface the tokens of the answer spans, for the first example (left) the question
is "Where is the book ?" and the answer is "on the desk". This question/passage pair example is taken
from Cui et al. [2022].

8 Related Works

ExQA models Extractive question answering is an important NLP task with numerous real-world
applications. The advance in this field has been mainly due to the availability of large-scale annotated
datasets such as SQuAD [Rajpurkar et al., 2016]. Early deep learning based ExQA models, such as
BidAF [Seo et al., 2016], Match-LSTM [Hu et al., 2017] and QaNet [Yu et al., 2018] among others
[Shen et al., 2016, Wang et al., 2017, Cui et al., 2017, Dhingra et al., 2017, Clark and Gardner, 2018,
Hu et al., 2018, Liu et al., 2018, Huang et al., 2018], were very specialized and heavily engineered.
The introduction of BERT [Devlin et al., 2019] has dramatically transformed the ExQA paradigm by
introducing a simple yet effective approach: concatenating the input question and text passage and
computing the start and end span answer using learned query parameters [Devlin et al., 2019]. In
this paper we call this model vanilla ExQA. Since its introduction, this objective is still the dominant
approach for extractive QA [Liu et al., 2019, Yang et al., 2019, Joshi et al., 2020, Yamada et al., 2020,
He et al., 2021, Yasunaga et al., 2022]. In this paper, we extend the vanilla ExQA by employing
dynamic query representation while keeping the same parameters number as the vanilla ExQA
and as well as a negligible computational cost. Furthermore, frameworks such as Splinter [Ram
et al., 2021] and ReasonBERT [Deng et al., 2021] have recently been proposed and have produced
state-of-the-art results on extractive question answering. However, the main contribution of these
models was the introduction of effective pretext tasks for improving ExQA models and thus require
additional self-supervised pre-training. Finally, our work is similar to the recently proposed DyREx
[Zaratiana et al., 2022], which also uses dynamic queries, however, it requires the addition of extra
parameters to the model whereas in our case the dynamic queries are obtained for free.

Relation to prefix tuning DyReF is inspired by prefix tuning [Li and Liang, 2021] which keeps
the pre-trained models fixed and only updates some prefix token parameters appended to the input
token embeddings before transformer layers. However, our approach differs on some points: (1)
first, we use bidirectional encoders instead of left-to-right language models, and we tune the whole
model parameters instead of only tuning the prefixes (i.e the queries); by only tuning the queries and
freezing the model weights, our model suffers from under-fitting resulting in poor performance; (2)
also, the main goal of prefix tuning is parameter efficient fine-tuning while the core motivation of
our approach is to obtain dynamic representations of the queries for extractive question answering
purpose.

9 Conclusion

In this paper, we presented DyReF, a new approach to ExQA using learnable dynamic queries. We
show that our approach outperforms the vanilla model on several datasets without increasing the
number of parameters, and maintaining approximately the same computational speed. For future
works, it would be interesting to adapt our proposed architecture for tasks involving the extraction of
multiple spans such as keyphrase extraction and multi-span question answering [Li et al., 2022].
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