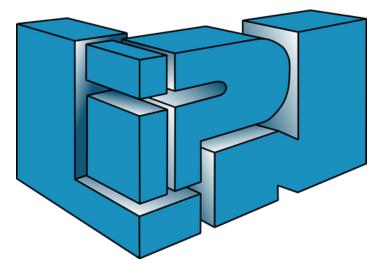
GNNer: Reducing Overlapping in Span-based NER Using Graph Neural Networks



Urchade Zaratiana *‡, Nadi Tomeh ‡, Pierre Holat *‡, Thierry Charnois ‡

*FI Group, Puteaux, France [‡] LIPN, Université Sorbonne Paris Nord - CNRS UMR 7030, Villetaneuse, France

1 - Introduction

- Two main paradigms for named entity recognition: sequence labelling and span classification
 - Given a sequence of tokens
 - X = ['Michael', 'Jordan', 'is', 'happy']

- 2 Model
- Span graph construction, defined by adj. matrix A

$$A[s_i, s_j] = \begin{cases} 1 \text{ if } s_i = s_j & \mathsf{N} \\ -1 \text{ if } \operatorname{overlap}(s_i, s_j) & \mathsf{C} \\ 0 & \operatorname{otherwise} \end{cases}$$

Negative edge for span overlap, positive egde at diagonal and no edge

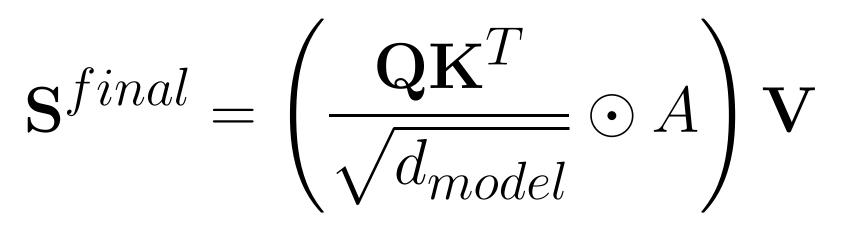
- <u>sequence labelling</u> performs NER by token-level prediction using scheme such as BIO (Begin Inside Outside)
 - Y_bio = ['B-PERS', 'I-PERS', 'O', 'O']
- <u>span-based approach</u> enumerates all spans then classifies them
 - Y_span = [(0, 0, 'O'), (0, 1, 'PERS'), (0, 2, 'O'), ...]
 - Use of the span as a basic unit instead of token/word
 - Allow richer span representation compared to sequence labelling (Integrate span-level features)
- Problem: In contrast to sequence labelling, span-based approaches produce entity overlaps
 - Not suitable for flat NER tasks, i.e NER without nested entities
- Previous works employ greedy decoding to filter span

GNNer-CONV

$$\mathbf{S}^{+} = \mathbf{GCN}_{+}(\mathbf{S}, E^{+})$$
$$\mathbf{S}^{-} = \mathbf{GCN}_{-}(\mathbf{S}, E^{-})$$
$$\mathbf{S}^{final} = [\mathbf{S}^{+}; \mathbf{S}^{-}]$$

Run two independent GCNs on span representation for negative and positive edges and concatenate the results.

GNNer-AT



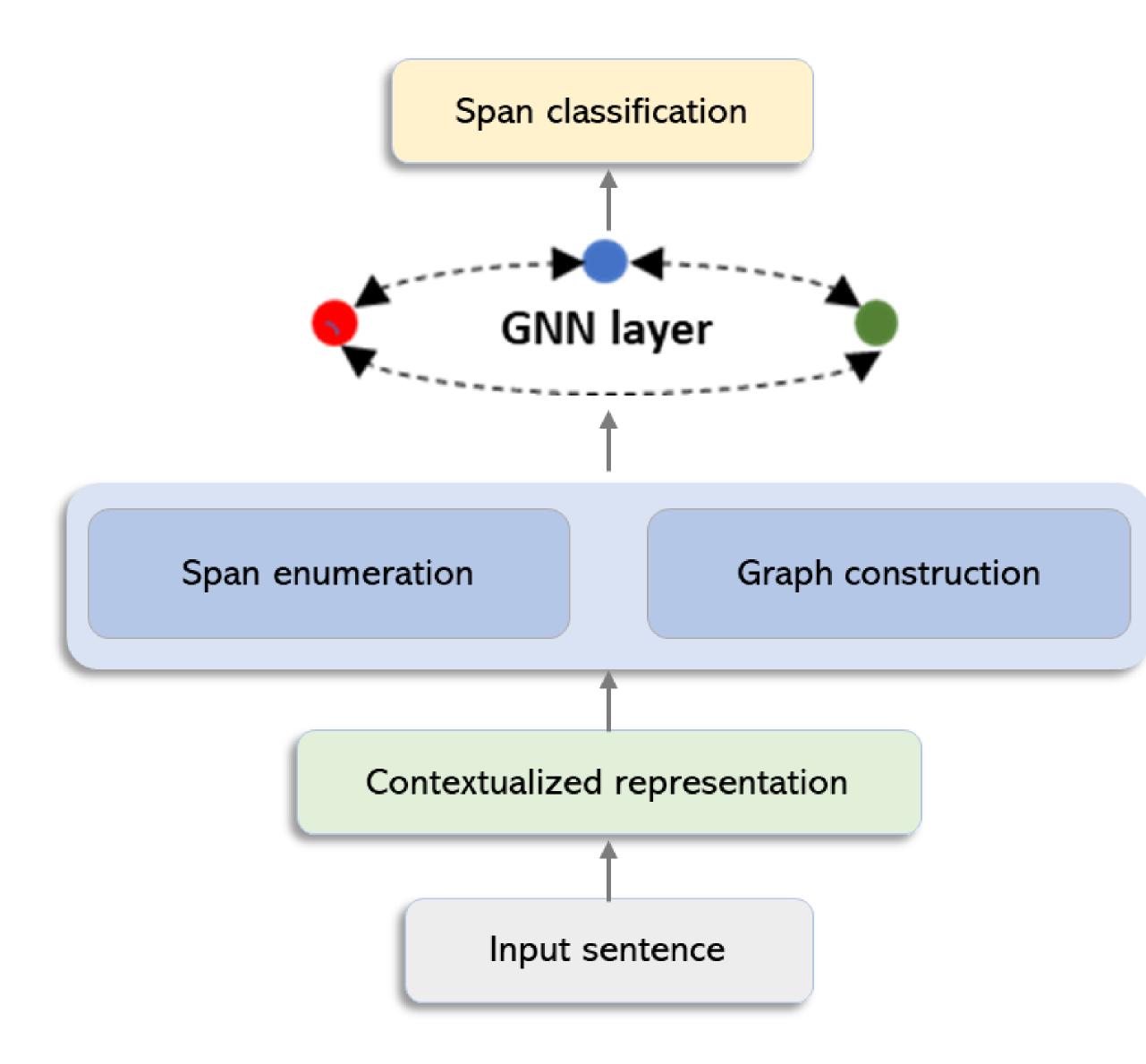
Project span representation into **Q**, K, V and perform attention (using the adjacency matrix as mask)

3 - Experiment results

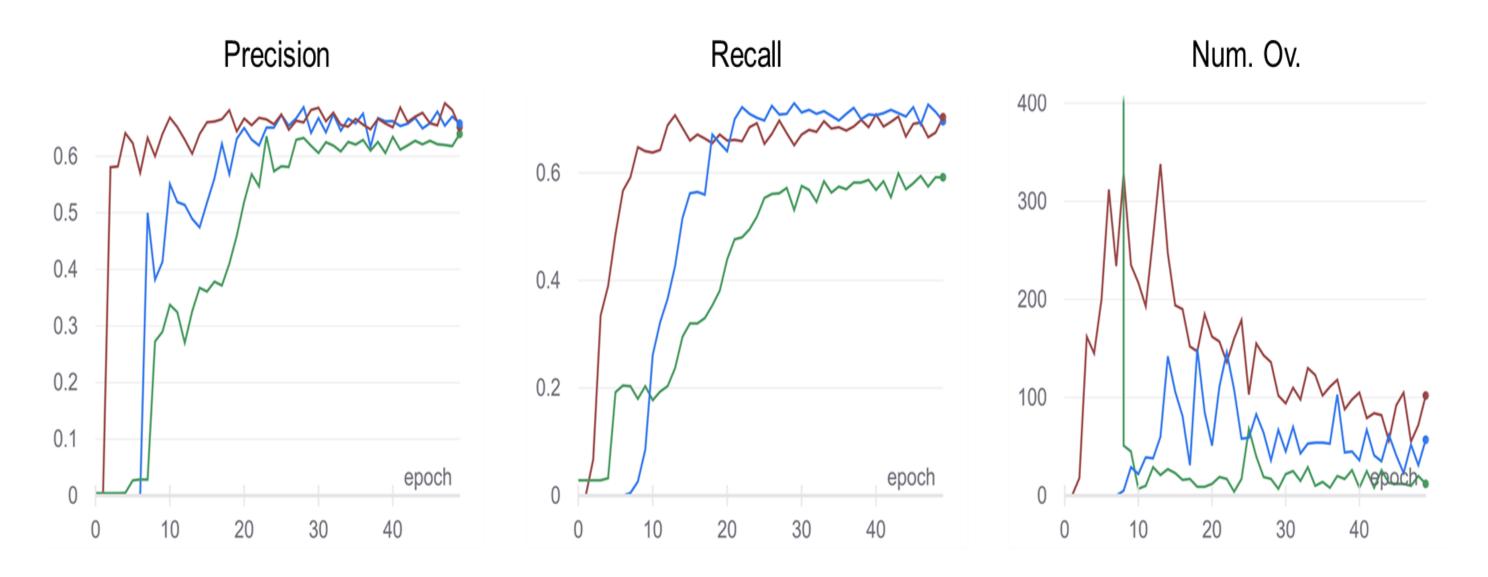
	Architecture	Precision	Recall	F1	Num. Ov.
	Baseline	89.83±0.48	90.31±0.26	90.06±0.15	83±27
Conll 2003	GNNer-CONV	90.12±0.32	89.88±0.36	90.16±0.52	52±1

overlap

- The greedy decoding retains the span with the highest prediction probability while dropping the others
- We propose to inject span overlap information into the model architecture using Graph Neural Networks (GNN): learn span representation that is aware of ○ To
 - overlapping neighbours
 - To bias the model towards predictions that implicitly respect the non-overlap constraints



	GNNer-AT	89.54±0.84	79.32±0.04	84.12±0.37	24±11
SciERC	Baseline	66.69±0.49	69.89±0.45	68.25±0.33	87±4
	GNNer-CONV	66.89±1.59	70.34±0.50	68.57±0.96	35±3
	GNNer-AT	63.21±0.51	58.06±0.86	60.53±0.69	13 ± 2
NCBI	Baseline	85.30±0.45	89.59±0.74	87.39±0.13	43±12
	GNNer-CONV	85.98 ± 0.45	88.93±0.45	87.43±0.45	16±5
	GNNer-AT	84.78 ± 0.18	79.41±0.61	81.98±0.38	10 ± 4



--BASELINE --GNNER-CONV --GNNER-AT

4 - Limitations and future works

- GNNs are powerful tools to integrate knowledge into deep learning models
- The model does not fully solve the overlapping span problem in contrast to heuristic approaches (the two approaches are orthogonal/can be combined together)

• Idea for future work:

- Use soft value for edges, especially for negative edges
- Treat positive/negative edge as edge type and use more complex GNN layer such as Heterogeneous Graph Transformer