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ABSTRACT

Recent studies have shown that Autoregressive Transformer Language Models
(LMs) can generate text sequences without relying on positional encodings (PEs).
This capability is attributed to the causal masks in these models, which prevent
tokens from accessing information from future tokens, allowing implicit learn-
ing of token positions. On the other hand, Bidirectional LMs, such as BERT,
tend to underperform on masked language modeling tasks when PEs are omitted.
This performance dip arises because transformer layers are inherently permuta-
tion equivariant; without PEs or masks, they cannot differentiate token positions,
making bidirectional processing difficult. In this analytical study, we examine a
variant of bidirectional Transformer LM that operates without PEs but incorporates
causal masks in its initial layers. Our findings reveal that this configuration yields
performance metrics on masked language modeling tasks that are on par with
traditional transformers that use PEs. However, when tested on the GLUE language
understanding benchmark, the model without PEs exhibits diminished performance.
These results highlight the importance of positional encodings in bidirectional LMs
and indicate that pretraining loss might not always correlate with performance on
downstream tasks.

1 INTRODUCTION

Transformers, as initially introduced by Vaswani et al. (2023), have propelled groundbreaking
advancements across a multitude of application domains. One of the most important components of
the transformer architecture is the positional encoding, designed to counteract the model’s inherent
permutation equivariance. In other words, without positional encodings, transformers exhibit a
behavior where if the input sequence is permuted, the output will similarly be permuted but retain
the same values. To address this, the most common approach is to inject positional encodings into
the input sequence. Absolute positional encoding (APE) Gehring et al. (2017), for instance, creates
a unique vector for each position ID and then adds this vector to the corresponding input token
embedding. However, a limitation arises with absolute PE: during training, it learns embeddings for a
fixed number of positions, often up to a predefined limit like 512 for models such as BERT (Devlin
et al., 2019). This means that, post-training, it cannot be directly applied to sequences longer than
this predefined limit. To circumvent this limitation, relative positional encodings (RelPE) (Raffel
et al., 2020; Su et al., 2021) have been introduced. These do not tie positional information to fixed
positions but rather learn embeddings that represent the relative distances or relationships between
pairs of tokens in a sequence. Some popular RelPE includes T5 relative PE (Raffel et al., 2020),
Rotary embeddings (Su et al., 2021), and ALiBi (Press et al., 2022).

Recent research has highlighted the feasibility of training autoregressive transformer language models
without the use of positional embeddings (Irie et al., 2019; Haviv et al., 2022). This capability is
believed to be influenced by the model’s integration of causal masks, allowing them to discern token
positions within sequences. In a recent study by Kazemnejad et al. (2023), a theoretical framework was
presented, suggesting that a causal Transformer Language Model (TLM) can effectively emulate both
absolute and relative positional encodings. Interestingly, their findings indicated that autoregressive
models trained without positional encodings, but only with causal masks, exhibited superior length
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Model MLM Loss (↓) MNLI/-MM SST-2 STSB RTE QNLI QQP MRPC CoLA GLUE (Avg.) (↑)

AbsPE 2.11 81.7/82.2 91.7 86.6 54.5 88.2 87.1 88.7 46.1 78.5

RelPE 2.10 80.7/81.2 91.9 84.7 61.0 86.9 87.0 88.1 43.0 77.9

NoPE 5.58 62.1/63.2 84.1 72.1 53.8 74.8 82.8 79.6 12.4 64.9

MaskNoPE 2.10 62.9/63.8 84.4 57.6 57.0 73.9 82.2 79.4 1.4 62.3

Table 1: Performance Comparison of Transformer Variants. Evaluation of models with different
positional encoding strategies: AbsPE (absolute positional encoding), RelPE (relative positional
encoding), NoPE (no positional encoding), and MaskNoPE (no positional encoding with causal
masks).

generalization in downstream tasks compared to those using widely-adopted absolute and relative
positional encoding methods. Given these findings, it becomes compelling to explore strategies
for eliminating positional encodings in bidirectional transformers, an avenue that remains largely
uncharted to date.
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Figure 1: Masked Languague modeling loss dur-
ing training.

In this paper, we delve into the pretraining of
bidirectional LMs using masked language mod-
eling, akin to the BERT-style pretraining, but
without the inclusion of positional encoding.
Drawing inspiration from the findings of Kazem-
nejad et al. (2023), we integrate positional in-
formation into the model by applying a causal
attention mask to the initial layers of the trans-
former, while retaining full attention in subse-
quent layers, ensuring the model remains bidi-
rectional. Our experiments with this configura-
tion, which we term MaskNoPE, demonstrate
that it achieves results comparable to transform-
ers equipped with both absolute and relative positional encodings in masked language modeling tasks.
However, its performance falters when assessed on language understanding tasks within the GLUE
benchmark, often underperforming significantly. Notably, in some instances, MaskNoPE even yields
results inferior to the variant with no positional encoding (NoPE).

2 EXPERIMENTS & RESULTS

Setup In our exploration of the impact of positional encoding on bidirectional LMs, we assess a
range of bidirectional transformer configurations. We consider the NoPE variant, which operates
without any positional encoding; the AbsPE that incorporates absolute positional embeddings; the
RelPE that utilizes rotary relative positional embeddings; and the MaskNoPE variant, which, while
eschewing positional encoding, introduces causal masking to the initial layers. All models are
pretrained using the masked language modeling (MLM) objective on a subset of the C4 corpus. Our
experimental setup follows that of Geiping & Goldstein (2022), employing a 16-layer transformer
with an embedding width of 768. All the models were trained for 12 hours on a V100 32G GPU
using the AdamW optimizer. We evaluate downstream performance on the GLUE benchmark (Wang
et al., 2019) using default hyperparameter settings.

Results As shown in Figure 1, the MLM loss for NoPE, unsurprisingly, plateaus at an elevated
value, showing the importance of positional information. Yet, the MaskNoPE setup, leveraging only
causal masking, mirrors the performance of both AbsPE and RelPE, all converging at comparable
losses. This suggests that causal masks might effectively compensate for the absence of traditional
positional information in transformers. However, the narrative shifts on downstream GLUE perfor-
mance. MaskNoPE trails notably behind the AbsPE and RelPE configurations and is on average
even surpassed by NoPE. This disparity underscores the indelible value of positional encodings in
bidirectional LMs. Moreover, it hints at a nuanced takeaway: pretraining loss, while informative,
isn’t a definitive predictor of downstream efficacy.
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A MODEL

To investigate the impact of positional encodings (PEs) on bidirectional Transformer language models
(LMs), we focus on four different configurations: Absolute Positional Encoding (AbsPE), Relative
Positional Encoding (RelPE), No Positional Encoding (NoPE), and a modified version with no
positional encoding but incorporating causal masks (MaskNoPE). The model’s architecture follows
the standard Transformer architecture, which first embeds input sequence ids X = {x1, . . . , xN}
into an embedding dimension D, and then passes them through a series of L Transformer layers:

H0 = Word_Embedding(X)

Hi = Transformer_layeri(Hi−1) for i = 1, . . . , L
(1)

Word_Embedding is the word embedding layer and Transformer_layeri corresponds to the
i-th transformer layer, consisting of a multi-head attention mechanism followed by position-wise
feed-forward networks.

NoPE In the NoPE (No Positional Encoding) configuration, we utilize the Transformer architecture
as outlined in equation 2, but without incorporating any form of positional encoding. Consequently,
this setup is indifferent to the order of the input sequence. Therefore, even if the input sequence is
randomly permuted, the output from the Transformer will correspondingly reflect this permutation,
i.e maintaining the same values but in the permuted order.
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APE For the APE configuration, the initial hidden state H0 is augmented with an absolute positional
encoding vector

H0 = Word_Embedding(X) + Pos_emb(N) (2)

In this configuration, Pos_emb(N) produced a distinct embedding vector for each position in the
sequence, ranging from 1 to N . The positional embedding vectors can be either randomly initialized
and subsequently learned during training, or it can utilize a fixed sinusoidal embedding, as proposed
in the original Transformer paper.

MaskNoPE In the MaskNoPE configuration, causal masks are applied to the first K layers of the
Transformer model, while the remaining layers are left unmasked, i.e., bidirectional. The hidden
states are computed as follows:

H0 = Word_Embedding(X)

Hi = Transformer_layeri(Hi−1,M) for i = 1, . . . ,K

Hi = Transformer_layeri(Hi−1) for i = K + 1, . . . , L

(3)

where M represents the causal mask applied to the first K layers. This mask is designed to prevent
each position in the sequence from attending to subsequent positions, thus enforcing a unidirectional,
or causal, information flow in these layers. For the subsequent layers i = K + 1, . . . , L, the causal
mask is not applied, enabling these layers to function bidirectionally. So overall, this model remain
bidirectional.
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