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Abstract

Extractive Question Answering (ExQA) is an
NLP task that aims to accurately identify the
location of the answer within a given docu-
ment, given a question. It is typically achieved
by independently predicting the start and end
positions of the answer. While simple, it out-
performs more structured approaches, such as
jointly predicting the start and end positions,
when working with large-scale data. However,
when data is limited, the joint objective, which
has a stronger inductive bias, proves to be more
effective, but at the cost of increased compu-
tational complexity. We propose a new ExQA
approach that combines the efficiency of inde-
pendent prediction with the advantages of the
joint objective by allowing for soft interactions
between start and end positions. Our exper-
iments show that our approach outperforms
existing baselines in both high and low data
settings.

1 Introduction

Extractive QA is an important task of Natural Lan-
guage processing with numerous practical appli-
cations. Given a question and the document con-
taining the answer, the objective of this task is
to identify the precise positions of the start and
end of the answer span within the document. In
the past, extractive QA methods have relied on
highly engineered architectures (Seo et al., 2016;
Hu et al., 2017; Wang et al., 2017), primarily uti-
lizing bidirectional long short-term memory net-
works and attention mechanism (Bahdanau et al.,
2015). However, with the advent of BERT (Devlin
et al., 2019) and other pretrained transformer-based
language models, the field has undergone a signif-
icant transformation. Upon its release, BERT set
new standards for QA performance, significantly
outperforming the previous best method on a vari-
ety of benchmarks. This was achieved through a
relatively straightforward approach, in which the
model first computes word representations and then

independently predicts the start and end positions
of the answer by computing start and end logits
through linear projection. This approach has be-
come the most widely used method for extractive
QA (Liu et al., 2019; Joshi et al., 2020; He et al.,
2021) due to its strong performance and computa-
tional efficiency, which is linear with respect to the
length of the input.

The independent objective function used in
BERT has proven to be effective in QA perfor-
mance. However, it may be sub-optimal as it does
not take into account the structure of the output.
A joint objective, which considers the interaction
between the start and end of the answer may be
a more effective approach. Our experimental re-
sults suggest that a joint objective greatly improves
the sample efficiency of a QA model and consid-
erably improves performance in scenarios where
there is limited data available. However, when
large amounts of data are employed, we found a
joint objective does not necessarily improve results
and can even harm performance, making it less
favorable to use in scenarios where data size is
scaled. Moreover, another disadvantage of the joint
objective is that it has a quadratic space and time
complexity in the length of the sequence, since the
score all spans in the input have to be calculated
for both training and inference.

As an alternative, in this paper, we propose an
approach that keeps the advantages of the joint
objective and independent objective while elimi-
nating their weaknesses. To do so, we model the
dependency of the start and end positions in a soft
manner, without explicit constraints on the objec-
tive. Specifically, instead of strictly imposing a
structure through a specialized objective function,
we allow the model to softly choose the type of
interaction it needs to produce the output, which
we refer to as "soft structural bias". To accomplish
this, we slightly modify the independent modeling
approach so that the parameters that compute the
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Figure 1: The figure illustrates the architecture of our proposed models. (a) DyREx uses an additional transformer
layer to compute dynamic queries using self-attention and cross-attention. (b) DyReF computes dynamic representa-
tions without adding parameters by feeding initial queries and the input tokens to pretrained transformers.

start and end position logits (i.e. the queries qs
and qe in Equation 1) can interact with each other
through attention mechanisms. This enables the
queries to decide the information they need from
each other without explicit instructions, and even
the possibility to ignore each other. Additionally,
since the dependency of the start and end positions
may vary depending on the input, we allow the
query parameters to aggregate information from
the input. Our approach thus keeps the linear com-
plexity of the independent objective, while at the
same time has good performance one few data. Fur-
thermore, as we do not impose any structure (i.e
we let the model decide itself), our approach also
has greater performance when scaled to large data.

In this paper, we propose two variants of our pro-
posed approach. The first variant, we called DyREx
(Dynamic Query Representation for ExQA), com-
putes the start and end interactions using a trans-
former layer with cross-attention. Specifically, the
queries interact with each other using self-attention
and the queries are made dependent on the input
using cross-attention. While DyREx is computa-
tionally efficient (linear complexity with input size),
it adds additional parameters (transformer layer)
which may not be desirable. To address this, we
propose a second variant called DyReF (Dynamic
Query Representation for Free), which computes
the interactions in a "Free" manner without adding
any parameters. This is achieved by feeding the
initial query representation along with the input
token embeddings into a pretrained transformer
layer such as Bert, allowing the queries to interact
with each others as well as with the input sequence,
without any additional parameters. Both DyREx
and DyReF are simple to incorporate into existing
ExQA models, which mainly employ the Indepen-

dent objective.
We conduct extensive experiments to demon-

strate the superiority of our proposed approaches
on a variety of benchmark extractive QA datasets.
We found that our approach achieved significant
improvements over the independent baseline, es-
pecially in the low-data regime. Additionally, we
performed a series of ablation studies to investi-
gate the important interactions by trying several at-
tention masks (causal, bidirectional, independent).
Our studies revealed two key findings: making the
queries dependent on the input is highly beneficial,
and making the queries interdependent further im-
proves the results. Furthermore, by visualizing the
attention maps, we found that the queries attend to
three principal regions: they attend to each other,
the region containing the question, and the region
containing the answer positions.

The rest of this paper is organized as follows. In
§(2) we provide the necessary background for un-
derstanding the baseline models. In §(3) we present
our proposed models in details, followed by our ex-
perimental setup, results, and further experimental
analysis in §(5). In §(8) we present an overview of
related work. The last section concludes this paper.

2 Background

For all the models we present, we are given a set
of input tokens X = {xi}Ni=1 which is the con-
catenation of the tokenized question Q and the
passage P containing the answer. These tokens are
encoded using a pretrained transformer language
model, yielding a set of contextualized embeddings,
H = {hi}Ni=1 ∈ Rd, d being the model dimension
size. We now describe two models that we use as
baselines: independent and a joint model.



Algorithm 1 PyTorch pseudocode for DyREx.

import torch

def dyrex(Bert, X, Q_0, Trans):
"""
Bert: BERT model
X: (Batch size, Length) input tokens
Q_0: (1, 2, Dim) initial query vectors
Trans: Transformer layer with cross-attention
"""
# Token representation
# (Batch size, Length, Dim)
H = Bert(input_ids=X)

# Repeat queries along batch axis
# (Batch size, 2, Dim)
Q_0 = Q_0.repeat(B, 1, 1)

# Dynamic queries by cross-attention
# (Batch size, 2, Dim)
Q = Trans(query=Q_0, key=H, value=H)
return Q

2.1 Independent Modeling
The independent model predicts the start (s ∈
1 . . . N ) and end (e ∈ 1 . . . N ) positions using the
following estimator:

p(s = i|X) =
exp(qT

s hi)∑N
i′=1 exp(qT

s hi′)

p(e = j|X) =
exp(qT

e hj)∑N
j′=1 exp(qT

e hj′)

(1)

Where qs and qe ∈ Rd are respectively the start
and end queries that are randomly initialized and
updated during training. The loss function is:

Lindep. = − log (p(s = i|X)p(e = j|X))

Due to its simplicity and its linear complexity in
the input sequence length, this approach is the most
widely used in the literature (Devlin et al., 2019;
Joshi et al., 2020; Yasunaga et al., 2022).

2.2 Joint Modeling
The joint model predicts the span probability di-
rectly, leveraging the idea that jointly estimating
both the start and end positions is more expressive
in terms of the range of distributions it can repre-
sent, and is less prone to label bias. To accomplish
this, we utilize a model of the following form:

p(s = i, e = j|X) =
exp(ϕ(hi,hj))∑

(i′,j′)∈S exp(ϕ(hi′ ,hj′))
(2)

In the above equation, S denotes the set of all
spans of the input sequence X , ϕ(hi,hj) ∈ R rep-
resents the joint score of token i being the start and
token j being the end of the answer. We adopt the
following scoring function:

ϕ(hi,hj) = qT
s hi + qT

e hj + hT
i Whj (3)

Algorithm 2 PyTorch pseudocode for DyReF.

import torch

def dyref(Bert, X, Q_0):
"""
Bert: BERT model
X: (Batch size, Length) input tokens
Q_0: (1, 2, Dim) initial query vectors
"""
# Token embeddings (Batch size, Length, Dim)
H_0 = Bert.embedding_layer(input_ids=X)

# Repeat queries along batch axis
# (Batch size, 2, Dim)
Q_0 = Q_0.repeat(B, 1, 1)

# Concat queries and token embeddings
# (Batch size, Length+2, Dim)
C_0 = torch.cat((Q_0, H_0), dim=1)
C = Bert.transformer_layers(input_embs=C_0)

# final queries and token representations
Q, H = C[:, :2], C[:, 2:]
return Q, H

This scoring function incorporates both indepen-
dent start and end scores (qT

s hi and qT
e hj) as well

as an interaction score modeled through a bilinear
layer, represented as hT

i Whj , where W ∈ Rd×d is
a learned parameter of the operator. It is notewor-
thy that independent modeling is mathematically
equivalent to using ϕ(hi,hj) = qT

s hi + qT
e hj , as it

only accounts for local scores. The loss function
employed in this study is:

Ljoint = − log p(s = i, e = j|X)

This loss function aims to maximize the probabil-
ity of the gold span. Due to the pairwise interac-
tion score, both computation of this loss and the
inference process have quadratic time and space
complexity with respect to the input length.

3 Dynamic Query Modeling

The main motivation behind the models we intro-
duce in this section is to combines the efficiency
and flexibility of independent approaches with in-
herent structural biases of present in the joint model.
Furthermore, the joint model which scores interac-
tions between start and end in the output layer may
negatively impact performance on large datasets
as our experiments show. Instead, we propose a
dynamic representation approach that models the
interdependence between start and end queries in
a soft manner, enabling the simulation of various
structural biases. For this purpose we employ atten-
tion mechanisms known for their expressive power
and performance. We present two models based on
this idea: DyREx and DyReF.



3.1 DyREx
Our first approach for incorporating structural bias
to the ExQA model learns qs and qe dynamically
in the context of a given Q and P . We begin by ini-
tializing the start and end query representations, q0

s

and q0
e , which are concatenated and passed through

a transformer layer to obtain dynamic representa-
tions qs and qe:

Q = Trans(Q0,H) (4)

with Qi = [qi
e,qi

s] the concactenated queries at
layer i and H the input token representations, and
Trans being a K-layers transformer layer with
cross-attention. More specifically, the i-th layer
of the transformer consists of a bi-directional self-
attention module self-atti applied between the
queries to model the interdependence between the
start and the end positions of the answer, a cross-
attention cross-atti which updates the query
representations by aggregating information from
the input sequence embeddings so that the queries
become dependent on the input, and a two-layer
point-wise feedforward network FFNi with GeLU
activation (Hendrycks and Gimpel, 2016):

Q̃i
= self-atti(Q = Qi,K = Qi,V = Qi)

Q̂
i
= cross-atti(Q = Q̃i

,K = H,V = H)

Qi+1 = FNNi(Q̂
i
)

(5)

Furthermore, an Add-Norm (skip connection
(He et al., 2016) plus layer normalization (Ba et al.,
2016)) are inserted after each of the components as
in Vaswani et al. (2017), but we do not show it here
for better readability. Moreover, both self-att
and cross-att layers are multi-head scaled dot-
product attention from Vaswani et al. (2017), and
the embedding dimension and the number of at-
tention heads of the decoder layers are the same
as for the token representation layer. The design
of DyREx is depicted in Figure 1, and its Pytorch
implementation is provided in Algorithm 1.

3.2 DyReF
In practice, DyREx is compuatationally efficient
and provides strong results. However, it adds non-
negligible number of parameters with the addition
of K-Layer transformer which might be undesir-
able. Motivated by this, we introduce DyReF,
which retains the same performance as DyREx with-
out adding any parameter to the initial model. To

do so, DyReF first concatenates the initial queries
Q0 to the output of the pretrained transformer (e.g.
BERT) embedding layer H0. They are then passed
to the transformer layers of the model to obtain the
representations of the queries and the input tokens:

[Q,H] = BERT([Q0,H0]) (6)

Where Q = [qs,qe] are the dynamic queries of
start and end positions obtained from the model.
The architecture of DyReF is illustrated in Figure
1, and its corresponding Pytorch pseudo-code can
be found in Algorithm 2.

3.3 Modeling with DyREx and DyReF

For both DyREx and DyReF, to compute the start
and the end answer position probabilities, we use
the same estimator and objective function as the
independent model in Equation (1). This choice
is jusrified by the fact that interactions between
start and end are taken into account in the query
representations in DyREx and DyReF, therefore
there is no need for further joint modeling. To
validate this hypothesis, we integrate DyREx and
DyReF into the joint model in Equation (2) and
compare both models. Our experiments confirm
that no further improvements are obtained by this
combination.

4 Experimental Setup

4.1 Data

In our experiments, we use several widely-used
English extractive question-answering datasets, in-
cluding SQuAD (Rajpurkar et al., 2016), Hot-
potQA (Yang et al., 2018), NewsQA (Trischler
et al., 2016), TriviaQA (Joshi et al., 2017), and Nat-
ural Questions (Kwiatkowski et al., 2019). These
datasets are sourced from various sources, such
as Wikipedia articles, news articles, and web snip-
pets. Each dataset consists of a triple of "Question,
Passage, and Answer", and the task is to predict
the precise position of the answer (start and end
positions) within the passage given the question.
The dataset statistics are provided in Table 1 of the
MRQA shared task paper (Fisch et al., 2019)1.

4.2 Hyperparameters

In this study, we used standard hyperparame-
ter configurations commonly found in the lit-
erature to ensure reproducibility. To achieve

1https://arxiv.org/abs/1910.09753

https://arxiv.org/abs/1910.09753


Train size Models
Datasets

SQuAD HotpotQA TriviaQA NewsQA NaturalQs Average

256

Indep. 65.74 53.23 28.49 35.80 41.87 45.03
+DyREx 70.75 57.08 41.66 43.77 45.57 51.77
+DyReF 71.08 55.08 40.53 44.56 46.91 51.63
Joint 69.55 53.42 43.48 44.79 43.33 50.91
+DyREx 70.01 55.52 29.17 43.58 44.85 48.63
+DyReF 72.25 46.19 41.01 46.45 45.7 50.32

512

Indep. 69.72 58.70 45.39 43.24 48.36 53.08
+DyREx 77.19 61.15 52.57 49.20 55.37 59.10
+DyReF 77.24 62.27 52.59 52.26 54.51 59.77
Joint 76.18 61.87 54.24 49.18 53.94 59.08
+DyREx 76.54 63.88 52.15 49.79 53.24 59.12
+DyReF 75.03 57.08 55.77 51.53 53.4 58.56

1024

Indep. 74.01 62.54 51.87 50.61 53.42 58.49
+DyREx 79.42 67.95 57.59 54.26 61.67 64.18
+DyReF 80.35 66.40 56.77 56.71 61.15 64.28
Joint 79.12 65.27 58.31 55.0 59.84 63.51
+DyREx 79.17 66.47 56.74 54.68 59.72 63.36
+DyReF 79.36 64.97 58.38 55.55 61.45 63.94

Full

Indep. 90.64 79.95 76.31 68.02 77.79 78.54
+DyREx 91.01 80.55 77.37 68.53 78.58 79.21
+DyReF 91.04 80.55 77.39 68.27 78.44 79.12
Joint 90.60 80.12 75.52 67.07 77.61 78.18
+DyREx 91.04 80.62 75.52 67.97 77.66 78.56
+DyReF 90.60 80.25 76.92 67.97 77.75 78.70

Table 1: Main results. We present experimental results using SpanBert (Joshi et al., 2020) for token representation,
on diverse datasets with varying sizes from 256 to full data.

this, we made use of the default hyperparam-
eter configuration provided by the Hugging-
Face Transformers library (Wolf et al., 2020)
(for the Independent model, we employed the
AutoModelForQuestionAnswering class
from the library). We used the Adam optimizer
(Kingma and Ba, 2015) with a learning rate of 3e-5,
and employed a warm-up stage for the first 10%
of the training steps, and then linearly decreased
the learning rate for the remainder of the training
steps. The batch size was set to 12, and we trained
for a maximum of 5 epochs for full-sized datasets.
For few-shot settings, we trained the models for a
maximum of either 2500 steps or 10 epochs. As the
DyReX variant of our model adds transformer lay-
ers for computing the dynamic queries. We found
that using three layers transformer provide a good
efficiency-performance trade-off. We use the Py-

Torch framework (Paszke et al., 2019) to implement
our models and loaded pre-trained models from
the Transformers library (Wolf et al., 2020). The
training of all models was conducted on a server
equipped with V100 GPUs. The total GPU hours
required for all experiments described in this pa-
per, as well as additional preliminary experiments,
amounted to approximately 2500 hours.

5 Results

The results of our experiments are reported in Table
1. Our experiments were conducted using a variety
of datasets, spanning a range of data sizes from
256 training examples to full datasets. For both the
independent and the joint models, we report the
performance results with and without DyREx and
DyReF.



5.1 Independent vs Joint

In this section, we investigate the comparative per-
formance of independent and joint modeling ap-
proaches. Our results indicate that, in cases of
limited data, the joint model exhibits a superior per-
formance, as demonstrated by the +6 point increase
in F1 score on the SQuAD dataset when using only
512 training examples. This finding highlights the
utility of incorporating more inductive bias in data-
scarce scenarios. On the other hand, when utilizing
full datasets, the independent model emerges as
the optimal choice on average. This phenomenon
aligns with established knowledge in the field of
machine learning, which posits that stronger induc-
tive bias improves sample efficiency, yet assuming
less knowledge may be more advantageous at larger
scales - as observed with convolutional and trans-
former models for image literature (Dosovitskiy
et al., 2020; Touvron et al., 2020; d’Ascoli et al.,
2021).

5.2 Soft structural models

In the current sub-section, we examine the per-
formance of joint and independent models when
augmented with the use of DyREx and DyReF as
soft structural biases.

Independent with soft structural bias Our re-
sults, as presented in the accompanying table,
demonstrate that the integration of DyREx and
DyReF with the independent model significantly
enhances its performance when compared to the
independent model alone. In this configuration, the
performance of DyREx and DyReF is comparable
to that of the joint model, and even surpasses it on
average. Similarly, when using full datasets, the
independent model augmented with either DyREx
or DyReF yields the best performance. Notably,
while the performance of the joint model plateaus
with the use of full datasets, DyREx and DyReF
are able to further improve the performance of the
independent model.

Joint with soft structural bias In contrast, when
considering the joint model with the integration of
DyREx and DyReF as soft structural biases, our re-
sults reveal that the performance improvement ob-
served with the independent model is not replicated.
Specifically, the addition of DyREx and DyReF
does not necessarily lead to the performance im-
provement of the joint model. This may be at-
tributed to the potential redundancy or conflicting

nature of the information provided by the joint
model and the structural biases, as the integration
of DyREx or DyReF in some instances even neg-
atively impact the performance of the joint model
(which is never happening with the independent
model).

Training Inference

Indep. 42.44 136.11
+DyREx 40.12 132.97
+DyReF 41.25 133.60

Joint 36.88 102.43
+DyREx 33.20 100.06
+DyReF 35.57 101.11

Table 2: Training and Inference speed throughput in
samples per second. The test was done using a V100
32G GPUs.

5.3 Efficiency analysis

In this sub-section, we conduct an efficiency analy-
sis of the models in question. The table 2 reports
the training and inference throughput of the mod-
els, measured in number of samples per second.
For this study, we run the models using a V100
GPU with 32GB of memory. As can be observed,
the independent model exhibits a significant advan-
tage in terms of efficiency compared to the joint
model. Furthermore, we also note that the incorpo-
ration of DyREx and DyReF does not significantly
impact the overall efficiency of the models, as evi-
denced by the minor reductions in the throughput
of the independent and joint models with DyREx
and DyReF respectively.

6 Attention analysis

The attention mechanism is a crucial aspect in our
work, as it enables the queries to interact with each
other in a meaningful way. In this section, we
conduct a thorough analysis of the attention mech-
anism to gain a better understanding of the model.
To do this, we undertake two studies: 1) In the
first study, we evaluate different attention masks to
identify the most relevant interactions between the
queries and the input sequence. 2) In the second
study, we examine the attention map to determine
which areas of the input the queries pay the most
attention to, which can aid in understanding the
model’s decision-making process
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Figure 2: Different attention masking for DyReF. a) Static is the one employed by the Indep. ExQA. b) Full is
a setting where both all the queries and all the tokens attend to each other. c) Bidirectional allow full interaction
between the queries. d) Causal is the same as the bidirectional but start query does not attend to the end query. e)
Independent the queries only depend on the input sequence but not attending to each other.

6.1 Attention mask variants

Motivation Our proposed models (DyREx and
DyReF) use attention mechanism to allow queries
to interact with each other, enabling them to model
dependencies the start and end of anwer. This im-
proves the ability to answer questions by aggregat-
ing relevant information through the Transformer
layers. Here, We investigate the importance of
different attention masks to better understand the
impact of different interactions on model perfor-
mance.

Masking strategies We evaluate four variants of
our model, shown in Figure 2. The figure also dis-
plays the Indep. model using static queries and
the Full model that allows full interaction between
queries and tokens, exclusive to DyReF. All vari-
ants use dynamic queries but with different atten-
tion masks between queries: Bidirectional allows
full attention between queries; Causal allows end
query to attend start query but not vice versa; and
Independent completely masks attention between
queries making them independent of each other.

Results Table 3 shows that all queries (full, bidi-
rectional and causal) perform similarly for DyREx
and DyReF, the difference is only marginal. How-
ever, in all the settings, having independent queries
always perform worse, indicating the benefit of
keeping attention between start and end queries.
Futhermore,

6.2 Attention visualization

In addition to the attention mask study, we visualize
the attention scores of the transformer layer to gain
insight into the model’s interactions with the input
sequence. The visualization is shown in Figure 3.
It was generated using a trained QA model on the
SQuAD dataset, using SpanBert and the DyReF
approach.

self-att EM F1
a) Static (indep.) 83.08± 0.09 90.64± 0.10

DyREx
c) Bidirectional 83.35± 0.07 91.01 ± 0.03
d) Causal 83.47 ± 0.17 91.00± 0.05

e) Independent 83.14± 0.44 90.87± 0.09

DyReF
b) Full 83.43 ± 0.18 91.04 ± 0.04
c) Bidirectional 83.37± 0.26 91.04 ± 0.05
d) Causal 83.43 ± 0.07 90.99± 0.07

e) Independent 83.03± 0.08 90.88± 0.01

Table 3: Different masking variants for the self-
attention layers. This study is performed on SQuAD
dataset using SpanBert for token representation. Results
are averaged across three random seeds.

Method To ease interpretation, we aggregate all
the attention matrices from SpanBert’s 12 layers
and 12 attention heads into a single one by applying
2D max pooling over the head and layer dimensions
of the stacked attention matrices. This results in a
single attention matrix of dimension (2+N)×(2+
N), where N is the length of the input sequence
and 2 is the number of queries. We visualize only
the query-query and query-token attention and drop
token-token interaction, resulting in an attention
map of 2× (2 +N) in Figure 3.

Analysis The attention visualization is shown in
Figure 3. We used two different inputs to test the
model’s consistency. Both inputs share the same
passage but have different questions and answers.
We observe that the queries attend to three main
regions: each other, the region containing the ques-
tion, and the region containing the answer posi-
tions. This demonstrate that the queries already
have knowledge of the answer span position before
making the final prediction, which may explain the
effectiveness of these approaches.
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Figure 3: Attention visualization. Figure displays tokens attended to by start and end queries (qs and qe) in a
trained QA model on SQuAD using SpanBert. Attention maps created by elementwise-max of attention values
across 12 attention heads and 12 layers. Two examples, using the same passage but different questions, are provided
to demonstrate attention consistency. Tokens of answer spans are in boldface. The first example (left) is from Cui
et al. (2022).

7 Related Works

Extractive QA Extractive question answering
(ExQA) is a widely-studied NLP task with var-
ious real-world applications. Advancements in
this field have been driven by the availability of
large-scale annotated datasets such as SQuAD (Ra-
jpurkar et al., 2016). Early ExQA models, such as
BidAF (Seo et al., 2016), Match-LSTM (Hu et al.,
2017), and QaNet (Yu et al., 2018), among others,
were highly specialized and required complex en-
gineering. The introduction of BERT (Devlin et al.,
2019) revolutionized the ExQA field by introduc-
ing a simple yet effective approach: concatenating
the input question and text passage and comput-
ing the start and end span answer using learned
query parameters, referred to as Indep. ExQA in
this paper. Since its introduction, this approach
has remained the dominant approach for extrac-
tive QA (Liu et al., 2019; Yang et al., 2019; Joshi
et al., 2020; Yamada et al., 2020; He et al., 2021;
Yasunaga et al., 2022). In this paper, we extend
the Indep. ExQA by utilizing dynamic query rep-
resentation while maintaining the same number
of parameters and a negligible computational cost.
Furthermore, frameworks such as Splinter (Ram
et al., 2021) and ReasonBERT (Deng et al., 2021)
have recently produced state-of-the-art results on
extractive QA, but their main contribution is the
introduction of effective pretext tasks for improv-
ing ExQA models. These models continue to use
the Indep. approach for fine-tuning, thus they are
orthogonal to our work and can be used in conjunc-
tion with it to further improve the results. Similar
to us, (Fajcik et al., 2021) have explored the use
of different objective the extractive QA. However,
they analysis focus on scenario with large data.

Inductive bias Recent research has challenged
the notion that increased inductive bias is always
beneficial. For instance, recent developments in
deep learning have shown that the CNN architec-

ture, which incorporates a strong inductive bias
for image processing tasks, has been surpassed in
performance by transformer models, which make
fewer assumptions about the data (Dosovitskiy
et al., 2020; Touvron et al., 2020).

It is worth noting that while hard inductive bi-
ases can act as a limitation, incorporating soft in-
ductive biases can lead to improved performance.
A recent example of this approach is the ConViT
(d’Ascoli et al., 2021) model, which integrates the
expressivity of transformers with the convolutional
biases through a self-attention mechanism that in-
corporates a soft convolutional inductive bias. The
resulting model has been shown to exhibit supe-
rior performance and data efficiency, similar to the
findings of our paper.

8 Conclusion

In this paper, we investigated the use of various
objective functions for extractive QA, specifically
the independent and joint objectives. Our findings
indicate that utilizing a strong inductive bias (joint
objective) can lead to improved performance when
data is limited. However, this advantage over the
more efficient independent objective is diminished
when large data sets are available. To address this
limitation, we proposed the DyREx and DyReF
models, which allow for flexible bias stimulation
in a soft manner. Our experiments demonstrated
that these models achieve competitive results in
both high and low data settings. In future work,
we plan to extend these models to other tasks, such
as named entity recognition, where multiple span
extraction is required.

Limitations

While our study provides empirical observations
that a model with less structural knowledge per-
forms better when the data size is scaled, we recog-
nize that a robust theoretical grounding to explain



this phenomenon is not within the scope of this
paper. Our focus was to establish these empirical
patterns and relationships, offering a launching pad
for more in-depth analysis in the future. However,
rather than viewing this as a limitation, we posit it
as an exciting opportunity for further exploration.
Future research can dig deeper into understanding
the underlying mechanisms that result in these find-
ings, further extending and validating the empirical
observations made in our study.
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